US009223912B1

a2z United States Patent (10) Patent No.: US 9,223,912 B1
Liapis et al. 45) Date of Patent: Dec. 29, 2015
(54) SYSTEMS, METHODS AND DEVICES FOR 200855‘271%(55? 221: ;gg (1)?; gl_léll(rlet etlal ~~~~~~~~~~~~~~~~~~ 7(7)%/6 6/2
irksetal. ...
PROVIDING RLCK PARASITIC 2014/0183692 Al* 7/2014 Yeh 257/531
EXTRACTION BACK-ANNOTATION IN 2015/0074629 Al* 3/2015 Chenetal. . .. 716/112
ELECTRONIC DESIGN AUTOMATION 2015/0128102 Al* 5/2015 Perryetal. ...ccooovennen... 716/137
(71) Applicant: Helic, Inc., San Jose, CA (US) OTHER PUBLICATIONS
.. Chapter 6—*Background on Floating Random Walk (FRW),” pp.
(72) Inventors: Apostolos Liapis, Athens (GR); 117-122 (6 pages).
Lampros Kokkalas, Athel.ls (GR); “F3D—Fast Accurate 3D RC Extraction,” Silicon Frontline Technol-
Manuela Andreea Mironiuc, Athens ogy, info@siliconfrontline.com (1 page).
(GR); Georgios Katsoulis, Athens (GR); “Variance Reduction in Monte Carlo Capacitance Extraction,” Bat-
Panteleimon Papadopoulos, Athens terywalla, et al. (6 pages).
(GR) “A Stochastic Algorithm for High Speed Capacitance Extraction in
Integrated Circuits,” Y.L.. Le Coz et al., Solid-State Electronics, vol.
(73) Assignee: Helic, Inc., San Jose, CA (US) 35, No. 7, pp. 1005-1012, 1992 (8 pages).
(Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner — Suchin Parihar
U.S.C. 154(b) by 0 days. (74) Attorney, Agent, or Firm — Nixon Peabody LLP
(21) Appl. No.: 14/482,296 (57) ABSTRACT
(22) Filed: Sep. 10, 2014 Systems, computer-readable storage media, and methods of
providing RLCK parasitic extraction for electronic design of
(51) Imt.ClL integrated circuits are presented herein. For one implementa-
GO6F 17/50 (2006.01) tion, the method includes: importing a simulator netlist
(52) U.S.CL extracted from the schematic file that simulates the IC, the
CPC ... GO6F 17/5009 (2013.01); GO6F 17/5045 simulator netlist providing nets and devices in the schematic;
(2013.01) importing the layout file which represents the physical layout
(58) Field of Classification Search of the IC; generating from the layout file a connectivity list
USPC. e 716/110 ~ with connectivity points in the IC for connecting generated
See application file for complete search history. RLCK parasitics; extracting from the layout file an RLCK
netlist for the connectivity points; generating from the layout
(56) References Cited data file and the connectivity list a cross-reference between

U.S. PATENT DOCUMENTS

7,096,441 B2 8/2006 Lo et al.
8,195,439 B1* 6/2012 Hussainccoevrenrnns 703/14
8,250,506 B2 8/2012 Bantas et al.
8,453,102 B1* 5/2013 Packetal. ..o 716/139
8,468,482 Bl 6/2013 Pack et al.

100\‘ 1;)1 1{03 0

Simulator
netlist

150

Schematic - Layout 111

Back-Annotation
123

Updated Simulator netlist
with SLBA parasitics
125

the connectivity points and the nets and devices in the simu-
lator netlist; from the cross-reference, simulator netlist, and
RLCK netlists, update the simulator netlist to includes RLCK
parasitics for the connectivity points in the IC; and output an
indication of the updated simulator netlist.

20 Claims, 4 Drawing Sheets

150

Schematic and Layout Back-Annotation (no-LVS)

7 :’ input from Schematic |
H

Input from Layout ;
H
i

Layout data file !

H
- . P
A |3 f Simulator nedlist ' T

H I)

! b i

L/

15~ i

SLBA extract
parasitics

!

119~
| SLBA - Simulator

113

Cross-reference

121~ ;

l Update Simulator netlist fo

include SLBA parasitics

123
Simulator netlist with
SLBA parasitics

H RLCK netlist /

US 9,223,912 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

“An Efficient Capacitance Extractor Using Floating Random Walks,”
M. Desai et al., Indian Institute of Technology, Oct. 30, 1998, pp. 1-10
(10 pages).

“A Floating Random-Walk Algorithm for Extracting Electrical
Capacitance,” Ralph B. Iverson, et al., Mathematics and Computers
in Simulation, 55 (2001), pp. 59-66 (8 pages).

“Field Solver Technologies for Variation-Aware Interconnect Para-
sitic Extraction,” Tarek Ali E1-Moselhy, Dept. of Electrical Engineer-
ing and Computer Science, Jan. 28, 2009, pp. 3-4 (2 pages).
“StarRC Custom Rapid3D Extraction—Next Generation high Per-
formance 3D Fast Field Solver,” Shah, et al., Synopsys Predictable
Success, Jun. 2010, pp. 1-7 (7 pages).

“Sess Rapid3D 20X Performance Improvement,” Synopsys Predict-
able Success, Greg Rollins, Jul. 19, 2010, pp. 1-12 (Power Point
slideshow) (12 pages).

“Fast Floating Random Walk Algorithm for Multi-Dielectric Capaci-
tance Extraction with Numerical Characterization of Green’s Func-
tions,” Zhuang, et al., Dept. of Computer Science at Tsinghua Uni-
versity 2012 IEEE, pp. 377-382 (6 pages).

“RWCap: A Floating Random Walk Solver for 3-D Capacitance
Extraction of Very-Large-Scale Integration Interconnects,” W. Yu, et
al., IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, No. 3, Mar. 2013, pp. 353-360 (8
pages).

“Efficient Techniques for the Capacitance Extraction of Chip-Scale
VLSI Interconnects Using Floating Random Walk Algorithm,” C.
Zhang, et al., Tsinghua National Laboratory for Information Science
and Technology, Dept. of Computer science & Technology, Tsinghua
University, 2014, pp. 756-761 (6 pages).

* cited by examiner

US 9,223,912 B1

Sheet 1 of 4

Dec. 29, 2015

U.S. Patent

I 'Old
abelo)s uealog
Nndo sseW pieoqliay layesadg Yono)
A A A A
//om //vm ,/Nr //mv H /9
Aejdsig
H /3
\4 Y Y y
sng O/l
ac
soepsyu SoBLSI lgjjonuo
Alowsy _otm: UoI}esIuNWuIo)) lieuey
}IOMIBN leuioxg ol
) VN Nz

/NN

/#m

ylomieN [eulayul

oc

walsAg |euteixg

US 9,223,912 B1

Sheet 2 of 4

Dec. 29, 2015

U.S. Patent

saniseted ygs

Ylim Isifjeu Jojejnuis

!

N

JStfisu MOy

sofiseled yg1s epniou
0} Jsfiiau Jojejnuuis ejepdn

—

.y

S A

N

sopseled 89Ua18J81-SS01)
PERX3 YE1S OIS - eSS

i
|
[}
t
i
1
1
1
1

(sA1-0u) uoljejouuyg-yoeyg jnoleT pu

e Jjewayosg

)

oSt

[4

uonenuwIS
» ~qzl

soniseted ygis yim
Isijou Jojeinuig pajepdn

bV ey

uofjejouUy-3oeg
jnodeT - ojewsyog

a » N-061

lsiiau
jolejnuig

"Old

=01

_ noken _ JeWBYIS

i

[}

[}

i

m

| EIRTUE]
: uonejnuig SOHO
i

i

:

L]

]

US 9,223,912 B1

Sheet 3 of 4

Dec. 29, 2015

U.S. Patent

e

// sopisered yg1s Yim isipeu Jojejnuig \blll LET
\-6¢2
\ ISiHeU Yo7 7 soljiseled ygS epnjoul
o1 ysipeu openug sjepdn [
) _|V
rMN ONN a0l81eai-sso1) mM..N
ﬂ 80IN0S - V1S V
v 23UB48J8I-Ss01)
soniseled Joenxa yg1s L RN loje|nwig - 821nog
» mMN mwNFNN # 612 ﬁ ﬁ|
~f o eep sajl JaI-x 1sipeu Isipau
noAe Fsipou Jnofe S0Ue)JSU}-SIBN lojenuig,

t
i
i
1 | sanog
|
I
t

apewaydg wiodj jndyj !

€ "old

uoenwiIg

» -zve

somsesed yg1s Lim
JSIFOU Jojenwis paiepdn

A //nmnmN

uofjelouuy-yoeg
1N0AET - S1RWAYIS

» a ~-0852

qp sJepsiul
Aunoauuo)

1sijau
101enuIg

/

ke

I

60¢

SAT

JUSLIUONAUT
uolienwIg

S

102

o -

isijjeu)
80IN0G JfEWIBYIS

re
’
s
I3
i

noke [1Sd9 \ \
) J

SR TS upynppnyp Wi .v w
ov gLe 10¢ V/oom

US 9,223,912 B1

Sheet 4 of 4

Dec. 29, 2015

U.S. Patent

\ soseled yg1l

UHM ISIION dd T
+ Lee

/

soiyseled yg7
speu oy apnjou o) Jsipeu

S _|V pejoenxe 347 ejepdn AJ
2JU3I38l-SS0I] v
3d1-v8T1 62¢
€8 T
sopseled j1oeixs yg 1] L ~~ LcE
» 6 va Ll vm gl vm
_\Nm\l 'esteinheinteing Sniateiateteindatetedeintely’ stul uintuaaiututeiatnieiel Sy, i Aataetednintatuteted Safatafetuubyf -

Ssuleu dijewayos
Jeullol Jjojeinuis
1SI[}9U PajoeLX® Id T

ol Ejep N—— sallf jai-x
nofe $90UBSU-S)aN

]
1
]
]
]
]
)
[}
1
(1959) 2oeualU] AJIANnD9UUOS WO} 3ndu] “ 1001 3d1 woa} induj

uoyejouuy-yoeg Ad1 PUE SAT

—— A E
b e
N s}eU pa}oa|es o} SISl
N, YETT YimIsipaN 347 patepdn
t N~ les
uonEjoUlY-yoeg
3d7-SA1
- oge

p =oepel]
ISTTNILETH oy

apow SJ8N pepnioxd
- Uni 3417

GO~ Jsijjeu
" 1809 \ \ 80IN0g _
. m
e 596._ o_«mEm;ow ;
oy

US 9,223,912 Bl

1

SYSTEMS, METHODS AND DEVICES FOR
PROVIDING RLCK PARASITIC
EXTRACTION BACK-ANNOTATION IN
ELECTRONIC DESIGN AUTOMATION

TECHNICAL FIELD

The present disclosure relates generally to software tools
for designing and modeling electronic systems, such as
printed circuit boards and integrated circuits. More particu-
larly, aspects of this disclosure relate to systems, methods and
devices for providing parasitic extraction in electronic design
automation (EDA) of integrated circuits.

BACKGROUND

Integrated circuits are the cornerstone of the information
age and the foundation of today’s information technology
industry. The integrated circuit, a.k.a. “chip” or “microchip,”
is a set of interconnected electronic components, such as
transistors, capacitors, and resistors, which are etched or
imprinted onto a tiny wafer of semiconducting material, such
as silicon or germanium. Integrated circuits take on various
forms including, as some non-limiting examples, micropro-
cessors, amplifiers, Flash memories, application specific inte-
grated circuits (ASICs), static random access memories
(SRAMs), digital signal processors (DSPs), dynamic random
access memories (DRAMs), erasable programmable read
only memories (EPROMs), electrically erasable program-
mable read only memories (EEPROMs), and programmable
logic. Integrated circuits are used in innumerable products,
including personal, laptop and tablet computers, consumer
electronics, such as smartphones and flats-screen televisions,
medical instruments, telecommunication and networking
equipment, airplanes, and automobiles.

Advances in integrated circuit (IC) technology and micro-
chip manufacturing have led to a steady decrease in chip size
and an increase in circuit density and circuit performance.
Modern day integrated circuits, while small enough to fit in
the hand of child, have millions of devices, including logic
gates and transistors, and a very complex photolithographic
layout. The scale of semiconductor integration has advanced
to the point where a single semiconductor chip can hold tens
of millions to over a billion devices in a space smaller than a
U.S. penny. Moreover, the width of each conducting line in a
modern microchip can be made as small as a fraction of a
nanometer. The operating speed and overall performance of a
semiconductor chip (e.g., clock speed and signal net switch-
ing speeds) has concomitantly increased with the level of
integration. To keep pace with increases in on-chip circuit
switching frequency and circuit density, semiconductor pack-
ages currently offer higher pin counts, greater power dissipa-
tion, more protection, and higher speeds than packages of just
a few years ago.

A variety of specialized software tools have been devel-
oped to meet the challenges of designing and manufacturing
more complex and higher performance electronic systems
such as printed circuit boards and integrated circuits. Layout
verification software, for example, is used to verify that a
design of an IC chip conforms to certain manufacturing tol-
erances that are required in fabricating the chip, to ensure that
the layout connectivity of the physical design of a chip
matches the logical design of the chip represented by a sche-
matic, and to model parasitic resistance and capacitance of
the chip (known as “parasitic extraction”). These tools exist in
one or more areas commonly referred to as electronic design
automation (EDA), electronic computer aided design

10

15

20

25

30

35

40

45

50

55

60

65

2

(ECAD), and technology computer aided design (TCAD). A
single EDA platform can offer software modules for inte-
grated circuit layout design, behavioral simulation, and func-
tional analysis and verification.

For many EDA platforms, rules are specified in order to
check the consistency between a physical design of a particu-
lar microchip, known as a “layout” in the art, and a logical
design of that microchip, referred to as a “schematic.” In an
operation, these rules are known as Layout Versus Schematic
(LVS) rules. For some implementations, running a command
file of LVS rules will extract devices and nets formed across
the chip’s layout hierarchy, and will then compare them to a
schematic netlist for that chip to ensure that the layout con-
nectivity of the physical design of a circuit matches the logi-
cal design of the circuit as defined by a schematic. In this
regard, rule sets known as Layout Parasitic Extraction (LPE)
rules are also specified to extract parasitic resistance and
capacitance information from different sections of a chip. For
a command file of LPE rules, the software platform will
identify and simulate electromagnetic phenomena due to
parasitic resistance and capacitance of the circuit.

As chip-interconnect and device-critical dimensions are
reduced and, concomitantly, system frequency is increased,
many additional parasitic effects must be considered and
accounted for during system design, simulation and evalua-
tion. Parasitic effects can cause inadvertent cross-coupling of
signals, a reduction in signal voltage, and noise in signal,
clock, and power distribution networks. If not properly
accounted for during system design, there is an increased risk
that the IC will experience functional failure or performance
limitations following fabrication and implementation. Para-
sitics can radically degrade logic levels, delay clock and
signal speeds, and otherwise prevent circuits from perform-
ing as designed. In general, shielding is not possible. The
volume of parasitic effects has been increasing for each tech-
nology generation and, with increases in circuit size, com-
plexity, and function, simulating the impact of these parasitics
is an enormous challenge requiring very large computing
resources and time.

Several tools and methodologies have been developed
based on equivalent circuit extraction to allow for fast and
accurate modeling of metallic interconnects belonging to a
semiconductor layout. In such methodologies, the intercon-
nect structures of the integrated circuit are divided into
smaller sections, and each section is modeled by an equiva-
lent circuit that models its electromagnetic behavior, includ-
ing electrical behavior, along with any parasitic couplings to
the substrate or other nearby structures. The aforementioned
LPE methodologies are usually fast and efficient, and their
output is usually a circuit netlist comprising R (resistor) and
C (capacitor) lumped elements. Some methods are also
capable of separately producing L. (inductance) and K (mu-
tual inductance) elements which, besides resistor and capaci-
tor elements, are oftentimes required to accurately model the
electromagnetic (EM) behavior of an IC at higher frequen-
cies. There is a continuing need to improve these tools for
each technology generation in order to address requirements
for higher integration, greater functional capability and com-
plexity, smaller chip area, and better performance of inte-
grated circuits.

SUMMARY

Disclosed herein are systems, methods, devices and com-
puter program products for providing parasitic extraction in
electronic design of integrated circuits. Some implementa-
tions are directed to novel flows for adding resistance-induc-

US 9,223,912 Bl

3

tance-capacitance-mutual inductance (RLCK) parasitics to
electronic design automation (EDA) platforms, while taking
into account layout hierarchy and providing magnetic cou-
pling effects on any level to the top-level simulation bench.
Some aspects of the disclosed concepts focus on electromag-
netic-modeling for back-annotation of design flow in EDA
for accommodating LK parasitics. In some implementations,
the back-annotation platform is designed to work on existing,
completed designs such that modifications aren’t needed. The
schematic netlist can include RLLCK parasitics on selected
nets with no extra effort. For some implementations, the
back-annotation platform supports full-chip extraction of
inductance and mutual inductance and automatically synthe-
sizes chip layouts.

Aspects of the present disclosure are directed to a method
of providing resistance-inductance-capacitance-mutual
inductance (RLCK) parasitic extraction for electronic design
of an integrated circuit. The method includes: receiving a
simulator netlist extracted from a schematic data file indica-
tive of a simulated representation of the integrated circuit, the
simulator netlist describing nets and devices in the schematic
data file; receiving a layout data file indicative of a physical
layout of the integrated circuit; determining from the layout
data file a connectivity list with a plurality of connectivity
points in the integrated circuit for connecting (or “stitching”)
generated RLCK parasitics; determining from the layout data
file one or more RLLCK netlists for the connectivity points;
determining from the layout data file and the connectivity list
a cross-reference between the connectivity points and nets
and devices in a netlist; determining from the cross-reference,
the simulator netlist, and the one or more RLCK netlists an
updated simulator netlist which includes RL.CK parasitics for
the connectivity points in the integrated circuit; and, output-
ting an indication of the updated simulator netlist.

According to other aspects of the present disclosure, a
computer-aided electronic design automation (EDA) system
for electronic design of an integrated circuit is presented. The
EDA system includes one or more user input devices, one or
more display devices, one or more processors, and one or
more memory devices. The at least one of the memory
devices stores instructions which, when executed by at least
one processor, causes the EDA system to perform certain
operations. These operations include: import a simulator
netlist extracted from a schematic data file indicative of a
simulated representation of the integrated circuit, the simu-
lator netlist describing nets and devices in the schematic data
file; import a layout data file indicative of a physical layout of
the integrated circuit; from the layout data file, generate a
connectivity list with connectivity points in the integrated
circuit for connecting generated RLCK parasitics; from the
layout data file, extract one or more RLLCK netlists for the
connectivity points; from the layout data file and the connec-
tivity list, generate a cross-reference between the connectiv-
ity points and nets and devices in a netlist; from the cross-
reference, the simulator netlist, and the one or more RLCK
netlists, update the simulator netlist to include RL.CK para-
sitics for the connectivity points in the integrated circuit; and
store and/or display an indication of the updated simulator
netlist.

Other aspects of the present disclosure are directed to non-
transitory computer-readable storage media that store
instructions which, when executed by one or more processors
of an integrated circuit design system, cause the one or more
processors to perform any of the methods, modules and
operations described herein. These operations may include,
for example: receiving a simulator netlist extracted from a
schematic data file indicative of a simulated representation of

40

45

4

the integrated circuit, the simulator netlist describing nets and
devices in the schematic data file; receiving a layout data file
indicative of a physical layout of the integrated circuit; deter-
mining from the layout data file a connectivity list with a
plurality of connectivity points in the integrated circuit for
connecting generated RLCK parasitics; determining from the
layout data file one or more RLCK netlists for the connectiv-
ity points; determining from the layout data file and the con-
nectivity list a cross-reference between the connectivity
points and nets and devices in a netlist; determining from the
cross-reference, the simulator netlist, and the one or more
RLCK netlists an updated simulator netlist which includes
RLCK parasitics for the connectivity points in the integrated
circuit; and, output an indication of the updated simulator
netlist.

The above summary is not intended to represent each
embodiment or every aspect of the present disclosure. Rather,
the foregoing summary merely provides an exemplification
of'some of the novel aspects and features set forth herein. The
above features and advantages, and other features and advan-
tages of the present disclosure, will be readily apparent from
the following detailed description of the representative
embodiments and modes for carrying out the present inven-
tion when taken in connection with the accompanying draw-
ings and appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of an example of a
system for modeling and simulating integrated circuits and
providing RLCK parasitic extraction.

FIG. 2 is a flowchart for a representative method or algo-
rithm for providing RLCK parasitic extraction in EDA of
integrated circuits (Schematic-and-Layout Back-Annotation
Flow (no-LVS)) that can correspond to instructions which can
be stored on one or more non-transitory computer-readable
media and can be executed by one or more controllers in
accord with aspects of the disclosed concepts.

FIG. 3 is a flowchart for another representative method or
algorithm for providing RLCK parasitic extraction in EDA of
integrated circuits (Schematic-and-Layout Back-Annotation
Flow (LVS)) that can correspond to instructions which can be
stored on one or more non-transitory computer-readable
media and can be executed by one or more controllers in
accord with aspects of the disclosed concepts.

FIG. 4 is a flowchart for yet another representative method
or algorithm for providing RLCK parasitic extraction in EDA
of integrated circuits (LVS and LPE Back-Annotation Flow)
that can correspond to instructions which can be stored on one
or more non-transitory computer-readable media and can be
executed by one or more controllers in accord with aspects of
the disclosed concepts.

The present disclosure is susceptible to various modifica-
tions and alternative forms, and some representative embodi-
ments have been shown by way of example in the drawings
and will be described in detail herein. It should be understood,
however, that the disclosure is not intended to be limited to the
particular forms disclosed. Rather, the disclosure is to cover
all modifications, equivalents, and alternatives falling within
the spirit and scope of the invention as defined by the
appended claims.

DETAILED DESCRIPTION OF THE
ILLUSTRATED EMBODIMENTS

This invention is susceptible of embodiment in many dif-
ferent forms. There are shown in the drawings, and will herein

US 9,223,912 Bl

5

be described in detail, representative embodiments of the
invention with the understanding that the present disclosure is
to be considered as an exemplification of the principles of the
invention and is not intended to limit the broad aspects of the
invention to the embodiments illustrated. To that extent, ele-
ments and limitations that are disclosed, for example, in the
Abstract, Summary, and Detailed Description sections, but
not explicitly set forth in the claims, should not be incorpo-
rated into the claims, singly or collectively, by implication,
inference or otherwise. For purposes of the present detailed
description, unless specifically disclaimed: the singular
includes the plural and vice versa; the words “and” and “or”
shall be both conjunctive and disjunctive; the word “all”
means “any and all”’; the word “any” means “any and all”’; and
the word “including” means “including without limitation.”
Moreover, words of approximation, such as “about,”
“almost,” “substantially,” “approximately,” and the like, can
be used herein in the sense of “at, near, or nearly at,” or
“within 3-5% of,” or “within acceptable manufacturing tol-
erances,” or any logical combination thereof, for example.

Referring now to the drawings, wherein like reference
numerals refer to like components throughout the several
views, FIG. 1 illustrates an example of a system, designated
generally as 10, for modeling and simulating integrated cir-
cuits and providing RL.CK parasitic extraction. Many of the
disclosed concepts are discussed with reference to the repre-
sentative system depicted in the drawings; the system illus-
trated in FIG. 1 is provided merely as an exemplary applica-
tion by which the various inventive aspects and features of
this disclosure can be applied. Thus, the novel aspects and
features of the present disclosure are not per se limited to the
particular arrangements and components presented in the
drawings. For example, many of the features and aspects
presented herein can be applied to other computing and
analysis systems without departing from the intended scope
and spirit of the present disclosure. Moreover, only selected
components of the system have been shown and will be
described in additional detail hereinbelow. Nevertheless, the
systems and devices discussed herein can include numerous
additional and alternative features, and other well-known
peripheral components, for example, for carrying out the
various methods and functions disclosed herein. Some of the
illustrated components are optional and, thus, can be
removed. Those components which are not necessary for
carrying out the aspects of the present disclosure will not be
described in further detail.

FIG. 1 is block-diagram schematically illustrating an elec-
tronic design automation (EDA) computer system 10 for
modeling and simulating integrated circuits and providing
RLCK parasitic extraction. The EDA computer system 10
comprises one or more input devices, which can include (in
any combination) a keyboard 12, a single-touch or multi-
touch touchscreen 16, a mouse, a track ball, a track pad, flash
and other solid-state drives, input ports, etc. For output, the
EDA computer system 10 can include, in a few examples, a
display device 14, which can include a high-resolution liquid
crystal display (LCD) panel, a plasma display, or a light
emitting diode (LED) or organic LED (OLED) display, one or
more speakers 18, and other conventional I/O devices and
ports. A cabinet (not shown) houses any or all of the illus-
trated components, including a processor or central process-
ing unit (CPU) 20, a main memory 22, a mass storage device
24, and the like.

The CPU 20 may include any suitable processor(s), such as
those made by INTEL®, TI® (Texas Instruments Inc.), and
AMD®. By way of example, the CPU 20 may comprise
plural microprocessors including a master processor, a slave

2 <

10

15

20

25

30

35

40

45

50

55

60

65

6

processor, and a secondary or parallel processor. CPU 20, as
used herein, may comprise any combination of hardware,
software, or firmware disposed inside or outside of the EDA
computer system 10 that is configured to communicate with
or control the transfer of data between the computer system
10 and a bus, another computer, processor, device, service, or
network. The CPU 20 comprises one or more controllers or
processors and such one or more controllers or processors
need not be disposed proximal to one another and may be
located in different devices or in different locations. The CPU
20 is operable to execute any or all of the various methods,
software platforms, and other processes and operations dis-
closed herein.

The CPU 20 is also connected to an input/output (I/O) bus
26, which can include any suitable bus technologies, such as
an AGTL+frontside bus and a PCI backside bus. The I/O bus
26 facilitates connection between the various input devices,
output devices, input/output devices, communication
devices, etc., such as those discussed in connection with FIG.
1. The I/O bus 26 is also connected to an external communi-
cation interface 28, which is operable for connecting to one or
more external system(s) 30 (e.g., EDA layout and schematic
design suites). Arrows shown in FIG. 1 represent the system
bus architecture of computer system 10; these arrows are
representative of any interconnection scheme serving to link
the various subsystems. Operation of the I/O bus 26 may be
controlled by an 1/O controller 32.

Mass storage device(s) 24 may include hardware, firm-
ware, or any other tangible machine-readable storage media
including instructions for performing the operations
described herein. Machine-readable storage media includes
any mechanism that stores information and provides the
information in a form readable by a machine (e.g., a comput-
ing workstation). For example, machine-readable storage
media includes floppy disks, mass disk drives, optical disks,
magnetic disks, magneto-optical disks, hard disks,
CD-ROMs, CDRs, DVDs, DVRs, flash and other nonvolatile
solid-state storage (e.g., USB flash drive), battery-backed-up
volatile memory, tape storage, reader, and other similar
media, and combinations of these. The source code of the
software of the present disclosure may also be stored or reside
on the mass storage device(s) 24. For example, the mass
storage device(s) 24 may store an EDA software design suite
(e.g., design suite 40 of FIG. 2), such as for example the
VIRTUOSO® IC Design Platform available from Cadence
Design Systems, Inc., for the creation, modeling, comparison
and verification of IC schematic and layout data files. As a
further example, the mass storage device(s) 24 may store an
RLCK parasitic extraction and back-annotation platform,
such as Schematic-and-Layout Back-Annotation (no-LVS)
Flow 150 of FIG. 2, Schematic-and-Layout Back-Annotation
(LVS) Flow 250 of FIG. 3, and/or LVS and L.PE Back-Anno-
tation Flow 350 of FIG. 4. One or more of the foregoing
platforms, or one or more segments thereof, may be stored
remotely and transmitted via wired or wireless network(s),
such as the Internet, to the system 10. Optionally, the RLCK
parasitic back-annotation platforms of FIGS. 2-4, or one or
more segments thereof, can be integrated into the design suite
40, and vice versa, without departing from the intended scope
and spirit of the present invention.

The EDA computer system 10 may be connected via a
network interface 34 to an internal computing network (intra-
net) 36 and may thereby interface with other computers using
this network. For example, each computer on the internal
network 36 may perform part or parts of the many series of
circuit simulation steps in series or in parallel. The internal
network 36 may be a wired network (e.g., using T-12 cabling),

US 9,223,912 Bl

7

a telephone network (e.g., using a public switch telephone
network (PSTN)), a packet network, or a wireless network, or
any combination or combinations thereof.
Schematic-Layout Back-Annotation (No-LVS) Flow

With reference now to the flow chart of FIG. 2, an improved
method for providing RLCK parasitic extraction in computer-
aided electronic simulation and design of integrated circuits
is generally described at 100 in accordance with aspects of the
present disclosure. FIG. 2 can be representative of an algo-
rithm that corresponds to at least some instructions that can be
stored, for example, in memory 22 or mass storage 24 of FIG.
1, and executed, for example, by the CPU 20, either alone or
in cooperation with external system(s) 30 and/or internal
network 36, to perform any or all of the above or below
described functions associated with the disclosed concepts.
Unless explicitly disclaimed or otherwise logically prohib-
ited, the method 100 can incorporate or otherwise take on any
of the various features, operations, optional configurations,
and functional alternatives described herein with respect to
the examples shown in FIGS. 3 and 4, and vice versa.

The method 100 starts in design suite 40 at blocks 101 and
103 with the generation of a schematic data file and a layout
datafile, respectively, of the IC design under investigation. An
IC layout (also known as a “mask layout”) is a representation
of the physical design of an integrated circuit, namely the
physical arrangement and interconnection of metal, oxide,
and semiconductor layers that make up the components of the
integrated circuit. Contrastingly, an IC schematic is a dia-
grammatic representation of the logical design of the circuit
under investigation. The schematic view of the circuit can be
created with any available schematic editor software platform
including, for example, using the CADENCE® VIR-
TUOSO® Schematic Composer and Editor. Then, the circuit
is simulated and analyzed, for example, using an available
simulation environment software tool, such as the
CADENCE® VIRTUOSO® Analog Design Environment
(ADE). Once circuit specifications are fulfilled in simulation,
the circuit layout can be created with any available layout
editor software platform including, for example, the
CADENCE® VIRTUOSO® Layout Editor and Layout Suite
XL. The resulting layout can verify geometric rules depen-
dent on the technology (design rules); a Design Rule Check
(DRC) can be performed for enforcing these design rules.
Optionally, electrical errors (e.g. shorts) can be detected using
an Electrical Rule Check (ERC). As an aside, any reference
made herein to a trademarked EDA software platform or tool
is purely for purposes of explanation and should therefore not
be considered as limiting the scope of the invention as
detailed in the appended claims.

At block 105 of FIG. 2, a circuit hierarchy configuration
setup (CHCS) is generated for the IC schematic. The CHCS,
which is oftentimes referred to as a configuration view, is the
test configuration a designer uses to simulate the IC design’s
test bench. The CHCS defines the binding of the schematic
views of the IC design to simulate the circuit’s ideal behavior,
i.e., without any parasitics. A “test bench” is a virtual envi-
ronment used to verify the correctness or soundness of a
design, e.g., by applying stimulus to and checking the
response from a semiconductor integrated circuit design,
often referred to as a “device under test.” The schematic data
file and the CHCS are imported into an IC simulation envi-
ronment, such as for example the CADENCE® VIR-
TUOSO® Analog Design Environment (ADE), at block 107.
The IC design suite simulation environment can be operable
as an application programming interface (API) for program-
matically accessing data from the CHCS and schematic of the
IC. The simulation environment product suite, in some

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiments, provides the capabilities to explore, analyze,
and verify a design against the user’s desired goals for thor-
ough exploration and validation of the design. After defining
a test bench, for example, users can run simulations and
analyze the results using the simulation environment.

With continuing reference to FIG. 2, the simulation envi-
ronment is used to generate a simulator netlist out of the
schematic view and CHCS, as indicated at block 109.
Depending on software and simulation engine, the netlist may
be a SPECTRE® netlist, a SPICE netlist (including HSPICE,
XSPICE, PSPICE, etc.), or any other known form, all of
which can be generally referred to as a schematic netlist
formatted in the user’s simulator syntax or “simulator netlist”
for short. The netlist specifies the components and connec-
tivity of the circuitry. Components can include gates, devices,
transistors, cells, logic blocks, input buffers, output buffers,
memory cells, decoders, arithmetic logic unit (ALU), and
other circuit blocks, for example. The connectivity includes,
for example, power and ground wiring (carrying respectively,
VDD and 0 volts) and the signal interconnect, which carry
analog or digital signals that propagate between different
blocks of the circuitry. The netlists discussed herein may
optionally be a hierarchical or a flat netlist. A special parasit-
ics netlist may be generated or the parasitics may be inserted
in a netlist that already exists. The netlist can either contain or
refer to descriptions of the parts or devices used. The inter-
connect netlist can be stored in a file, such as a database file
(stored on a hard disk or server) for use by other processes or
flows.

At blocks 111 and 113, respectively, the simulator netlist
extracted from the schematic data file at block 109 and the
layout data file generated at block 103 are imported into or
otherwise received by a Schematic-and-Layout Back-Anno-
tation (SLBA) Flow 150. As indicated above, the simulator
netlist describes (all) the nets and devices in the schematic
data file, whereas the layout data file is indicative of the
physical layout of the integrated circuit under investigation.
In the flow illustrated in FIG. 2, the SLBA 150 can provide
RLCK parasitic extraction and back-annotation with only
schematic and layout as input. In this embodiment, the sche-
matic and layout information can be accessed or “read” with-
out using CDL netlist, GDSII or other standardized database
file formats. It is desirable for at least some embodiments that
the layout be “generated” using a “schematic-driven layout”
tool, i.e., correspondence between schematic and layout
devices and nets should exist. For some applications, SLBA
150 cannot directly read the IC schematic and the IC layout,
both of which are saved as binary database files on a third
party design suite (e.g. CADENCE® VIRTUOSO®). As
such, SLBA 150 can be operable to use a third party propri-
etary API for accessing the data from the design suite 40
database and other information like the schematic-driven lay-
out database that provides cross reference data between sche-
matic and layout (there is no “text-based” connectivity inter-
face, but rather binary access through vendor’s API). For
example, SLBA 150 can use the CADENCE® Design Frame-
work II (DFII) application programming interface (API) to
read layout and schematic information from the VIR-
TUOSO® design suite.

The method 100 proceeds to block 115 of FIG. 2 where a
connectivity list is generated or otherwise determined from
the layout data file. This connectivity list comprises connec-
tivity points within the integrated circuit for generating
RLCK parasitics. By way of example, in this step of extrac-
tion, a call is made to the SLBA modeling engine and the
top-level connectivity points (a.k.a. ports) in the IC are refer-
enced. Top-level connectivity points can be considered

US 9,223,912 Bl

9

design top level pins, plus the devices terminals; all these can
be stored in the layout data file. At block 117, one or more
RLCK netlists are generated for the connectivity points iden-
tified by the SLBA modeling engine at block 115. This RLCK
netlist contains parasitics for (all) physical interconnects
between devices. Parasitics from metal routing and physical
connectivity between devices are extracted by an electromag-
netic simulation engine to formulate a spice subcircuit of
RLCK elements or an S-Parameter file of the top level ports.

From the layout data file, connectivity list, and simulator
netlist, a cross-reference between the connectivity points
identified at block 115 and the nets and devices in the simu-
lator netlist imported at block 111 is generated at block 119.
In the example provided in FIG. 2, the top-level connectivity
points in the IC are referenced to identify where to back-
annotate the RL.CK netlist into the original simulator netlist.
As used herein, back-annotation can be defined to mean that
the RLCK netlists generated by the SLBA modeling engine
are imported into the simulator netlist of the schematic data
file. For an SDL generated layout, the cross-reference infor-
mation is part of the database; otherwise, a set of built-in rules
are used to create the cross-reference. These matching rules
use all available information from layout and netlist, such as
number of instances per net, number of instances per instance
type, number and type of instances that connect to each top
level port, and number of device ports per instance.

Utilizing the cross-reference generated at block 119, the
simulator netlist imported at block 111, and the RLCK
netlist(s) generated atblock 117, an updated simulator netlist,
which includes RLCK parasitics for the connectivity points in
the integrated circuit, is generated at block 121. In some
embodiments, updating the simulator netlist requires separat-
ing the simulator netlist into multiple simulator nets, and
connecting each of the simulator nets to a respective one of
the RLCK netlists. In order to update the simulator netlist,
each device node in the netlist is updated with the correspond-
ing connectivity point using the cross-reference file and the
generated RLCK netlist(s). At block 123, an indication of the
updated simulator netlist is output to the user (e.g., saved as a
digital file in the mass storage device 24 and, optionally,
displayed via the display device 14 of the EDA computer
system 10). Finally, at block 125, the updated simulator
netlist generated at block 121 is imported via a simulation
engine and a simulation is performed with the updated files.
Schematic-Layout Back-Annotation (LVS) Flow

Turning nextto the flow chart of FIG. 3, another method for
providing RL.CK parasitic extraction in computer-aided elec-
tronic simulation and design of integrated circuits is generally
described at 200 in accordance with aspects of the present
disclosure. Similar to the embodiment illustrated in FIG. 2,
the flowchart in FIG. 3 can be representative of an algorithm
that corresponds to at least some instructions that can be
stored, for example, in memory 22 or mass storage 24 of FIG.
1, and executed, for example, by the CPU 20, either alone or
in cooperation with external system(s) 30 and/or internal
network 36, to perform the corresponding functions. The
method 200 can incorporate or otherwise take on any of the
various features and operations, optional configurations, and
functional alternatives described herein with respect to the
examples shown in FIGS. 2 and 4. Similar to the method 100
of FIG. 2, for example, the method 200 of FIG. 3 starts in
design suite 40 at blocks 201 and 203 with the generation of
schematic and layout data files, respectively, of the IC design
under investigation. Next, a circuit hierarchy configuration
setup (CHCS) is generated at block 205 and, once generated,
the schematic data file and the CHCS are imported into an IC
simulation environment (e.g., the VIRTUOSO® Analog

10

15

20

25

30

35

40

45

50

55

60

65

10
Design Environment (ADE)) at block 207. IC simulation
environment is then used to generate a simulator netlist out of
the schematic view and CHCS, as indicated at block 209.

By way of contrast to the flow presented in FIG. 2, the
method 200 of FIG. 3 requires that, prior to exporting the
layout data file to the Schematic-and-Layout Back-Annota-
tion (LVS) Flow 250, the layout file be stored in a standard file
format at block 211. As indicated above, the layout specifies
the geometries of the physical layout of the IC circuitry,
including the various mask and process layers. The design
layout is made up of semiconductor layouts of the circuit
elements, with a connective topography that should be the
same as that given in the schematic diagram. Once the layout
functionality is verified, the final layout and associated netlist
may be converted to a standard database file format, such as
the GDSII stream file format, the CIF file format, the OASIS
file format, or any other file or database formats used to store
layout or mask data. GDSII stream file format is currently the
de facto industry standard for data exchange of integrated
circuit layout artwork (with other formats, such as OASIS,
gaining traction for replacing GDSII). It is a binary file format
that can be used to reconstruct all or part of the artwork to be
used in sharing layouts, transferring artwork between differ-
ent tools, and creating photomasks. All necessary files,
including mask layout GDSII files, netlists and technology
files, can be securely encrypted, for example, using 128 bit
protocol.

At block 213, a netlist text file is extracted from the sche-
matic information of the IC. Depending on software and
simulation engine, this netlist (generally referred to herein as
“source netlist”) can be a Circuit Design Language (CDL)
netlist, which is a subset of the SPICE format and is used to
exchange circuit information between design suites like
CADENCE® VIRTUOSO® and other EDA tools. The
source netlist, which is formatted in a generic SPICE lan-
guage, describes the circuit by means of devices and their
connectivity and is a common input to Layout Versus Sche-
matic (LVS) tools. By way of comparison to the simulator
netlist generated at block 209, the source netlist of block 213
typically cannot be used by simulators since it omits many
device parameters that are needed for simulation. The simu-
lator netlist, on the contrary, has information that a circuit
simulator needs to simulate the user’s test configuration (i.e.,
“configuration view”). According to the illustrated example
of FIG. 3, the SLBA 250 provides a “simulateable” output;
since the source netlist cannot be used for this matter, the
simulator netlist acts as the source for back-annotating the
generated RLCK parasitics.

With continuing reference to FIG. 3, the source (CDL)
netlist from block 213 is fed to an LVS tool 215 along with the
layout standard file format (GDSII) from block 211. This flow
uses the LVS tool 215 to determine the correspondence of
devices and nets between schematic and layout. The LVS
technique and computer software detects connectivity mis-
matches between the mask layout block according to the
schematic data file (netlist). The LVS tool 215 can verity
mask layout interconnection(s) by comparing them to the
corresponding schematic data file (netlist). For some embodi-
ments, the LVS tool 215 performs the following steps: first,
the tool extracts device information from the layout standard
file format; second, the tool identifies connectivity informa-
tion and generates a layout netlist; and, third, the tool com-
pares the layout netlist and the source netlist in order to see
whether the layout implementation matches the initial sche-
matic implementation. Supposing there are no “compare
errors” and the layout matches the schematic, then the layout
netlist can be used as a reference to generate a simulate-able

US 9,223,912 Bl

11

netlist with the same behavior as the schematic netlist. An
LVS connectivity interface (sometime referred to as “CCI”)
database 217 stores the files generated by the LVS tool 215
and acts as the API for the SLBA to extract information from
the LVS tool.

At blocks 219 and 221, respectively, the simulator netlist
extracted from the schematic information at block 209 and the
source netlist extracted from the schematic information at
block 213 are imported into or otherwise received by the
Schematic-and-Layout Back-Annotation (LVS) Flow 250 as
inputs from the schematic data file. In the same vein,
nets&instances cross-reference files, the layout netlist, and
the layout data file are all imported from the GDSII and
source net list via the LVS tool 215 and LVS connectivity
database 217 at blocks 223, 225 and 227, respectively.
Nets&lInstances cross-reference files are the cross-reference
files generated by the LVS tool 215 to conduct the comparison
between the layout netlist and the source netlist. For some
implementations, the layout netlist is a critical component
since it is where the RLLCK parasitics will be connected.
Annotated layout data file, which is generated by the LVS
tool, contains the initial geometrical information of the lay-
out. Additionally, net connectivity and device information are
annotated on top of the layout data file. The layout data file is
where the SLBA 250 gets the metal structures to feed to the
SLBA modeling engine.

The SLBA-Simulator cross-reference 119 in the SLBA
(no-LVS) flow 150 of FIG. 2 is directly provided from the
“schematic-driven layout” tool where the SLBA 150 reads
layout and identifies cross-reference information for the cor-
responding simulator netlist. The back-annotation platforms
in FIGS. 3 and 4, by contrast, process the annotated layout
data file to extract parasitics for the metal shapes in the IC.
The LVS connectivity interface 217 provides cross reference
information between the (GDSII) layout netlist and the
(CDL) source netlist. The method 200 of FIG. 3 proceeds to
block 229 where a connectivity list is generated or otherwise
determined from the layout data file. This connectivity list
comprises connectivity points within the integrated circuit for
generating RLCK parasitics. At block 231, one or more
RLCK netlists are generated for the connectivity points iden-
tified by the SLBA modeling engine at block 229.

From the nets&instances cross-reference files, the layout
netlist, and the connectivity list, a cross-reference between
the connectivity points identified at block 229 and the nets
and devices in the source netlist is generated at block 233.
Likewise, the simulator and source netlists imported at 219
and 221 are utilized at block 235 to generate a cross-reference
between the nets and devices in the source list and the nets and
devices in the simulator netlist. These cross-references are
then imported into block 237 where the source-simulator
cross-reference is mapped against the SLBA-source cross-
reference to establish a cross-reference between the top-level
connectivity points and the nets and devices in the simulator
netlist. The SLBA 250 provides as an output a final netlist that
can be simulated by a user’s circuit simulator. Since the
source netlist 213 is not, by itself, “simulateable,” the SLBA
250 maps the nets and devices from the SLBA-source netlist
cross-reference to the simulator-source netlist cross-refer-
ence to establish an SLBA-simulator netlist cross-reference.

Utilizing the cross-references generated at blocks 233 and
235, as well as the simulator netlist imported at block 219, and
the RLCK netlist(s) generated at block 231, an updated simu-
lator netlist, which includes RLLCK parasitics for the connec-
tivity points in the integrated circuit, is generated at block
237. In this step, the initial simulator netlist that contains the
devices of the schematic design is connected to the SLBA

10

15

20

25

30

35

40

45

50

55

60

65

12

extracted netlist. As a non-limiting example, when the ports
of two devices connect to each other, one common net can be
defined:

Devicel Netl Net2

Device2 Net2 Net3
When a user selects Net2 to get extracted by the SLBA, then
Net2, in order to get enriched with RC or RLCK parasitics, is
“broken” into multiple nets where the parasitic elements will
get connected:

Devicel Netl Net2_1

Device2 Net2_2 Net3

SLBA Net2_1 Net2_2
This is the updated netlist where the simulator can “see” that
between Devicel and Device2, there exists another (virtual)
device SLBA that includes the parasitics model of Net2. In
other words, SLBA updates the connectivity of the circuits’
devices so that they connect to their corresponding parasitics.
At block 239, an indication of the updated simulator netlist is
output to the user (e.g., saved as a digital file in the mass
storage device 24 and, optionally, displayed via the display
device 14 of the EDA computer system 10). Finally, at block
241, the updated simulator netlist generated at block 237 is
imported via a simulation engine and a simulation is per-
formed with the updated files.

LVS-LPE Back-Annotation Flow

Presented in FIG. 4 is another method for providing RLCK
parasitic extraction in computer-aided electronic simulation
and design of integrated circuits in accordance with aspects of
the present disclosure. Similar to the embodiments illustrated
in FIGS. 2 and 3, the flowchart in FIG. 4 can be representative
of an algorithm that corresponds to instructions that can be
stored, for example, in memory 22 and/or mass storage 24 of
FIG. 1, and executed, for example, by the CPU 20, external
system(s) 30 and/or internal network 36. The method 300 can
incorporate or otherwise take on any of the various features,
operations, optional configurations, and functional alterna-
tives described above with respect to the examples shown in
FIGS. 2 and 3. Similar to the method of FIGS. 2 and 3, for
example, the method 300 of FIG. 4 starts in design suite 40 at
blocks 301 and 303 with the generation of schematic and
layout data files, respectively, of the IC design under investi-
gation. Similar to block 211 of FIG. 3, block 305 in FIG. 4
includes storing the layout data file in a standard file format,
such as the GDSII stream file format or other file or database
formats used to store layout or mask data. Likewise, the
method 300 also requires extracting a source netlist from the
schematic data file, as indicated at block 307. Similar to the
netlist text file that is extracted at block 213 in FIG. 3, the
source netlist of FIG. 4 may be formatted as a CDL netlist or
other generic SPICE language that describes the IC by means
of devices and their connectivity.

Source (CDL) netlist 307 is subsequently fed to an LPE
tool 309 along with the layout (GDSII) standard file format
305. In the embodiment of FIG. 4, the LVS and LPE Back-
Annotation Flow (LLBA) 350 can seamlessly connect the
parasitics extracted by a third party Layout Parasitic Extrac-
tion (LPE) tool and the selected nets that are extracted by
LLBA to a hybrid model. Using this flow, a designer can
continue to use the LPE tool of their choice for RC extraction
for selected nets of the design, and can easily and without any
modifications to the original design select one or more “sig-
nificant” nets that need accurate magnetic coupling extraction
and feed these selected nets into the LLBA engine 350 for
RLCK parasitic extraction and back-annotation. To generate
a hybrid model using a combination of the LPE tool and
LLBA, users “exclude” a selected set of “significant” nets
from the LPE run; the selected set of nets excluded from the

US 9,223,912 Bl

13

LPE tool is included in the LL.BA extraction process. The
LPE step of extraction 309 includes an LVS run with connec-
tivity interface database output 311, similar to block 217 in
FIG. 3. Depending on the LPE tool, this connectivity inter-
face database 311 can be generated during one LPE step or in
two discrete LVS+LPE runs, for example; however, the input
of interest to LLBA 350 is the same.

The LPE run 309 also extracts an LPE netlist, as indicated
at block 313 of FIG. 4. Similar to the simulator netlists gen-
erated at blocks 109 and 209 in FIGS. 2 and 3, respectively,
the LPE t001309 of FIG. 4 is capable of providing as an output
a “simulateable” netlist for the user’s circuit simulator
engine. This output—LPE extracted netlist—contains all of
the devices from the initial schematic design plus all RC
parasitics generated from the LPE tool. The LLBA 350 of
FIG. 4 extracts one or more RLCK netlists and connects the
extracted netlist(s) to the LPE extracted netlist, as described
in further detail below.

At block 315, the LPE extracted netlist from block 313 is
imported into or otherwise received by the LVS-LPE Back-
Annotation Flow 350 as input from the schematic data file.
Similar to the SLBA 250 flow of FIG. 3, nets&instances
cross-reference files, the layout netlist, and the layout data file
are all imported from the GDSII and source net list via the
LPE tool 309 and connectivity interface database 311 at
blocks 317, 319 and 321, respectively. The method 300 of
FIG. 4 proceeds to block 323 where a connectivity list is
generated or otherwise determined from the layout data file.
In contrast to the configurations described above with respect
to FIGS. 2 and 3, this connectivity list comprises selected
connectivity points within the integrated circuit for generat-
ing RL.CK parasitics, e.g., the selected set of nets excluded
from the LPE tool is included in the LL.BA extraction process.
Atblock 325, one or more RL.CK netlists are generated for the
connectivity points identified by the LLBA modeling engine
at block 323.

From the nets&instances cross-reference files, the layout
netlist, and the connectivity list, a cross-reference between
the connectivity points identified at block 323 and the nets
and devices in the LPE extracted “simulator format” netlist is
generated at block 327 of FIG. 4. In this embodiment, the LPE
tool 309 output is the LPE extracted reference netlist for
simulations; the LLLBA 350 therefore generates a cross-refer-
ence between the connectivity points for the selected set of
nets excluded from the LPE tool and the connectivity points
in the integrated circuit that were used to extract RLCK
parasitics. Utilizing the cross-reference generated at block
327, as well as the LPE extracted “simulator format™ netlist
imported at block 315, and the RL.CK netlist(s) generated at
block 325, an updated simulator netlist, which includes
RLCK parasitics for the connectivity points in the integrated
circuit, is generated at block 329. Thus, the “Full LPE netlist”
can be considered as equivalent to the LPE-Tool netlist hav-
ing nets and devices and RC parasitics for selected nets plus
LLBA RLCK parasitics for selected “significant” nets. At
block 331, an indication of the updated simulator netlist is
output to the user (e.g., saved as a digital file in the mass
storage device 24 and, optionally, displayed via the display
device 14 of the EDA computer system 10). Finally, at block
333, the updated simulator netlist generated at block 237 is
imported via a simulation engine and a simulation is per-
formed with the updated files.

Aspects of this disclosure can be implemented, in some
embodiments, through a computer-executable program of
instructions, such as program modules, generally referred to
as software applications or application programs executed by
a computer. The software can include, in non-limiting

10

20

25

30

35

40

45

50

55

60

65

14

examples, routines, programs, objects, components, and data
structures that perform particular tasks or implement particu-
lar abstract data types. The software can form an interface to
allow a computer to react according to a source of input. The
software can also cooperate with other code segments to
initiate a variety of tasks in response to data received in
conjunction with the source of the received data. The software
can be stored on any of a variety of memory media, such as
CD-ROM, magnetic disk, bubble memory, and semiconduc-
tor memory (e.g., various types of RAM or ROM).

Moreover, aspects of the present disclosure can be prac-
ticed with a variety of computer-system and computer-net-
work configurations, including tabletop devices, multipro-
cessor systems, microprocessor-based or programmable-
consumer electronics, mainframe computers, and the like. In
addition, aspects of the present disclosure can be practiced in
distributed-computing environments where tasks are per-
formed by remote-processing devices that are linked through
a communications network. In a distributed-computing envi-
ronment, program modules can be located in both local and
remote computer-storage media including memory storage
devices. Aspects of the present disclosure can therefore, be
implemented in connection with various hardware, software
or a combination thereof, in a computer system or other
processing system.

Any of the methods described herein can include machine
readable instructions for execution by: (a) a processor, (b) a
controller, and/or (c) any other suitable processing device.
Any algorithm, software, or method disclosed herein can be
embodied in software stored on a tangible medium such as,
for example, a flash memory, a CD-ROM, a floppy disk, a
hard drive, a digital versatile disk (DVD), or other memory
devices, but persons of ordinary skill in the art will readily
appreciate that the entire algorithm and/or parts thereof could
alternatively be executed by a device other than a controller
and/or embodied in firmware or dedicated hardware in a
well-known manner (e.g., it can be implemented by an appli-
cation specific integrated circuit (ASIC), a programmable
logic device (PLD), a field programmable logic device
(FPLD), discrete logic, etc.). Also, some or all of the machine
readable instructions represented in any flowchart depicted
herein can be implemented manually. Further, although spe-
cific algorithms are described with reference to flowcharts
depicted herein, persons of ordinary skill in the art will
readily appreciate that many other methods of implementing
the example machine readable instructions can alternatively
be used. For example, the order of execution of the blocks can
be changed, and/or some of the blocks described can be
changed, eliminated, or combined.

It should be noted that the algorithms illustrated and dis-
cussed herein as having various modules or blocks or steps
that perform particular functions and interact with one
another are provided purely for the sake of illustration and
explanation. It should be understood that these modules are
merely segregated based on their function for the sake of
description and represent computer hardware and/or execut-
able software code which can be stored on a computer-read-
able medium for execution on appropriate computing hard-
ware. The various functions of the different modules and units
can be combined or segregated as hardware and/or software
stored on a non-transitory computer-readable medium as
above as modules in any manner, and can be used separately
or in combination.

While particular embodiments and applications of the
present disclosure have been illustrated and described, it is to
be understood that the present disclosure is not limited to the
precise construction and compositions disclosed herein and

US 9,223,912 Bl

15

that various modifications, changes, and variations can be
apparent from the foregoing descriptions without departing
from the spirit and scope of the invention as defined in the
appended claims.

What is claimed is:

1. A method of providing resistance-inductance-capaci-
tance-mutual inductance (RLCK) parasitic extraction for
electronic design of an integrated circuit, the method com-
prising:

receiving a simulator netlist extracted from a schematic

data file indicative of a simulated representation of the
integrated circuit, the simulator netlist describing nets
and devices in the schematic data file;

receiving a layout data file indicative of a physical layout of

the integrated circuit;
determining from the layout data file a connectivity list
with a plurality of connectivity points in the integrated
circuit for connecting generated RLCK parasitics;

determining from the layout data file one or more RLCK
netlists for the connectivity points;

determining from the layout data file and the connectivity

list a cross-reference between the connectivity points
and nets and devices in a netlist;

determining from the cross-reference, the simulator netlist,

and the one or more RLCK netlists an updated simulator
netlist which includes RLLCK parasitics for the connec-
tivity points in the integrated circuit; and

outputting an indication of the updated simulator netlist.

2. The method of claim 1, wherein the determining the
cross-reference is further based on the simulator netlist, and
wherein the cross-reference is between the connectivity
points and the nets and devices in the simulator netlist.

3. The method of claim 1, wherein the determining the
updated simulator netlist includes separating the simulator
netlist into multiple simulator nets, and connecting the simu-
lator nets to the one or more RLCK netlists.

4. The method of claim 1, wherein the simulator netlist is
extracted from the schematic data file with a design suite
simulation environment that is operable as an application
programming interface (API) for accessing data from a cir-
cuit hierarchy configuration setup of the integrated circuit.

5. The method of claim 1, wherein the layout data file, prior
to being received, is stored in a standard file format, the
method further comprising receiving a layout netlist and a
nets&instances cross-reference file from the standard file for-
mat version of the layout data file.

6. The method of claim 5, wherein the layout netlist
includes nets and devices information extracted from the
layout data file, and wherein the nets&instances cross-refer-
ence file includes a cross-reference between the layout netlist
and a source netlist.

7. The method of claim 6, wherein the layout netlist and the
nets&instances cross-reference file are imported from a con-
nectivity interface database of a Layout Versus Schematic
(LVS) software tool.

8. The method of claim 7, wherein the determining the
cross-reference is further based on the layout netlist and the
nets&instances cross-reference file, and wherein the cross-
reference is between the connectivity points and the nets and
devices in the source netlist.

9. The method of claim 8, further comprising:

receiving a source netlist extracted from the schematic data

file; and

determining from the source netlist and the simulator

netlist a second cross-reference between nets and
devices in the source list and nets and devices in the
simulator netlist,

15

20

40

45

50

55

60

16

wherein the determining the updated simulator netlist is

further based on the second cross-reference.

10. The method of claim 6, wherein the layout netlist and
the nets&instances cross-reference file are imported from a
connectivity interface database of a Layout Parasitic Extrac-
tion (LPE) software tool.

11. The method of claim 10, wherein the determining the
cross-reference is further based on the layout netlist and the
nets&instances cross-reference file, and wherein the cross-
reference is between the connectivity points and nets and
devices in the simulator netlist.

12. The method of claim 11, wherein the simulator netlist
is an LPE extracted netlist extracted from the schematic data
file via the LPE software tool, and wherein the determining
the updated simulator netlist is further based on the LPE
extracted netlist.

13. A computer-aided electronic design automation (EDA)
system for electronic design of an integrated circuit, the EDA
system comprising:

one or more user input devices;

one or more display devices;

one or more processors; and

one or more memory devices storing instructions which,

when executed by at least one of the one or more pro-

cessors, cause the EDA system to:

import a simulator netlist extracted from a schematic
datafile indicative of a simulated representation of the
integrated circuit, the simulator netlist describing nets
and devices in the schematic data file;

import a layout data file indicative of a physical layout of
the integrated circuit;

from the layout data file, generate a connectivity list with
a plurality of connectivity points in the integrated
circuit for connecting generated RLCK parasitics;

from the layout data file, extract one or more RLCK
netlists for the connectivity points;

from the layout data file and the connectivity list, gen-
erate a cross-reference between the connectivity
points and nets and devices in a netlist;

from the cross-reference, the simulator netlist, and the
one or more RLCK netlists, update the simulator
netlist to include RLCK parasitics for the connectivity
points in the integrated circuit; and

store or display, or both, an indication of the updated
simulator netlist.

14. One or more non-transitory computer-readable storage
media including instructions which, when executed by one or
more processors, cause the one or more processors to perform
operations comprising:

receiving a simulator netlist extracted from a schematic

data file indicative of a simulated representation of the
integrated circuit, the simulator netlist describing nets
and devices in the schematic data file;

receiving a layout data file indicative of a physical layout of

the integrated circuit;
determining from the layout data file a connectivity list
with a plurality of connectivity points in the integrated
circuit for connecting generated RLCK parasitics;

determining from the layout data file one or more RLCK
netlists for the connectivity points;

determining from the layout data file and the connectivity

list a cross-reference between the connectivity points
and nets and devices in a netlist;

determining from the cross-reference, the simulator netlist,

and the one or more RLCK netlists an updated simulator
netlist which includes RLLCK parasitics for the connec-
tivity points in the integrated circuit; and

output an indication of the updated simulator netlist.

US 9,223,912 Bl

17

15. The non-transitory computer-readable storage media of
claim 14, wherein the determining the cross-reference is fur-
ther based on the simulator netlist, and wherein the cross-
reference is between the connectivity points and the nets and
devices in the simulator netlist.

16. The non-transitory computer-readable storage media of
claim 14, wherein the determining the updated simulator
netlist includes separating the simulator netlist into multiple
simulator nets, and connecting the simulator nets to the one or
more RLCK netlists.

17. The non-transitory computer-readable storage media of
claim 14, wherein the layout data file, prior to being received,
is stored in a standard file format, the method further com-
prising receiving a layout netlist and a nets&instances cross-
reference file from the standard file format version of the
layout data file.

18. The non-transitory computer-readable storage media of
claim 17, wherein the layout netlist includes nets and devices
information extracted from the layout data file, and wherein
the nets&instances cross-reference file includes a cross-ref-
erence between the layout netlist and a source netlist.

19. The non-transitory computer-readable storage media of
claim 17, wherein the layout netlist and the nets&instances
cross-reference file are imported from a connectivity inter-
face database of a Layout Versus Schematic (LVS) software
tool.

20. The non-transitory computer-readable storage media of
claim 17, wherein the layout netlist and the nets&instances
cross-reference file are imported from a connectivity inter-
face database of'a Layout Parasitic Extraction (LPE) software
tool.

10

18

